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A multilevel, free-surface, viscous primitive equation ocean model has been developed to 
study the response of baroclinic oceans to stationary and moving weather systems. The 
model avoids the usual small time steps associated with the fast moving surface gravity waves 
by dividing the flow into baroclinic and barotropic (vertically averaged) modes, with the 
surface waves coupled to the latter; the baroclinic modes are then treated explicitly and the 
barotropic waves implicitly. Results of a 60-hr time integration for a stationary hurricane 
are presented, and compared to the results of an integration performed with purely explicit 
time marching techniques. 

1. INTRODUCTION 

The equations representing a baroclinic ocean exclude sound waves through the 
incompressibility approximation, but retain fast moving surface gravity waves with 
speeds of ~500 km/hr or so, unless the rigid lid approximation is involved. Recent 
studies have indicated that certain aspects of baroclinic wave growth and geostrophic 
adjustment processes are misrepresented by the rigid lid approximation [3]. On the 
other hand, the fast free surface waves have limited the time steps employed by up-to- 
date ocean models to -15 min with a 100 km resolution. It was to keep the free 
surface aspect of ocean modelling without its severe limitation of the time marching 
step that the present split-mode, semi-implicit model was developed. 

Kwizak and Robert [4] have developed a semi-implicit technique for atmospheric 
motions by treating the gravity waves implicitly, all other modes explicitly. O’Brien 
and Hurlburt [7] designed a two-layer semi-implicit ocean model to study the coastal 
upwelling. However, in both of these models, a Helmholtz equation for one of the 
appropriate variables had to be solved in each layer, offsetting some of the computer 
time savings achieved by the larger time step. In Section 2 we present the governing 
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equations and in Section 3 their splitting into barotropic and baroclinic modes. The 
model presented in this paper solves only one Helmholtz equation for the surface 
height, which is really a great advantage in this case, because at least seven vertical 
mesh points (or levels) are needed to resolve the thermocline and its changes in typical 
situations of interest. The fixed mesh point or level model can be looked upon as an 
Eulerian approach to treating vertical transport processes, whereas layer models can 
be regarded as a Lagrangian approach, with the layer thickness following thermocline 
deformations. In the case of the atmosphere, there are usually y1 - 1 coupled Helm- 
holtz equations for an n-level model, and, in the ocean, n coupled equations for an 
n-layer model. 

In Section 4 the numerical techniques for the spatial differencing and time integra- 
tion will be presented. In Section 5 the initial and boundary conditions for the particu- 
lar hurricane simulation and comparison study are given. In Section 6 the results of a 
60-hour time integration for the case of a stationary hurricane with a lilevel model 
are given, and compared to similar integrations with a purely explicit time marching 
technique. 

2. PHYSICAL MODEL AND BASIC EQUATIONS 

The ocean we want to model is assumed to be hydrostatic, Boussinesq, and con- 
tained in a rectangular basin with a flat bottom. The relevant equations of momentum 
and heat transport can then be written as (for definition of symbols, see Appendix A) 

ah 
at= 

-H 
I 
$$++I - [&(u,h)+$,(v,h)l. 

We use the equation of state [2] 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

PI + PO 
’ = 1.000027(X + q,(P’ + P,,)) ’ (84 
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where 
a0 = 0.698, 
X = 1779.5 + 11.257’, - 0.0745(TI)2 - (3.8 + 0.01~,)S, 

PI = 5890 + 38T, - 0.375T12 + 3S, 
(W 
(8~) 

with P,, being the total pressure and Tl the temperature deviation in units of atmos- 
pheres and ’ C, respectively. 

KH , AH , and BH are the horizontal eddy diffusivities for momentum, temperature 
and salinity, respectively, and Kv , Av , and Bv the corresponding vertical components. 

3. MODE SPLITTING FOR SEMI-IMPLICIT FORMULATION 

We can rewrite Eqs. (1) and (2) as 

where 

(lib) 

with 
P’ = P - pogh - Pa - pogz. uw 

Here P’ is the pressure due to the baroclinicity of the ocean (i.e., its density perturba- 
tion), P, is atmospheric pressure, and h is surface height, above the mean height H, P 
the total pressure in the water. 

Averaging Eqs. (9) and (10) with respect to height (l/H) Jr ( ) dz = [ 1, and assum- 
ing that h, the surface deviation, is at least two orders of magnitude smaller than IT, 
the total (mean) depth of the ocean, we have 

$-f[o] = -g$--++ [A], (12) 

+ PI. (13) 
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Subtracting (12) and (13) from (9) and (10) we have 

ad -- 
at 

.fi' = A - [A], 

z +fu’ = B - [B]. 

We note here that Eqs. (14) and (15) are independent of the terms that govern external 
gravity waves, namely, -gVh and -(l/p,,) VP, . Thus, Eqs. (14), .(15), together with 
(3), (4), (5), and (6) govern the slow moving baroclinic modes, mostly Rossby waves 
and internal waves. Equations (12), (13), and (7) govern the external gravity modes and 
can be solved implicitly. 

4. NUMERICAL MODEL 

In this section we will present the finite difference techniques employed to solve the 
two systems of equations given in Section 3. We shall represent values of a dependent 
variable c$(x, y, z, t) as discrete values of the independent variables x = idx, y = jdy, 
z = kdz, and t =nAt as &. The finite difference operators that replace first and 
second derivatives are the following. 

W = <bi+l/z - L-Id/Ax, VW 
W = (A+1 - A-WAX, WW 
~~2~ = UW = (k+l + $i-1 - ViW2, (16~) 

62 = (&+I,2 + Ll12W. (164 

The last expression (16d) is used to define values of C# at spatial locations halfway 
between the original grids; these are needed in the differencing of the transport terms 
for the various quantities (see Figs. 1 and 2). 

We shall first treat the system governing the barotropic motion, Eqs. (12), (13), and 
(7). 

[u]“+l = [u]“-l + 2At {(F”+l + I;“-‘)/2 + [A]“}, (17) 
[u]%+l = [+l + 2At ((Gn+l + G”-l)/2 + [BIN}, WI 
hn+l = hn-l + 2At {(Jn+l + J”-l)/2 + 2At K”), (19) 

where 
F = fbl - gh& - (llpo) &pa’, (204 
G = -fbl - gSP - (l/p,,) &,Pa?‘, (2Ob) 
J = --H{6,[U]~ + S,[C]“}, Gw 
K = -{S,(PP) + s,(m)}. (204 

All terms in a given equation are expanded about the spatial location on which the 
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FIG. 1. Vertical layering of the model. 
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FIG. 2. Grid network on a horizontal plane. 

respective variable occuring on the left-hand side is defined. Note that U, u and u’, u’ 
are all defined at the same lattice points, so that no averaging is necessary for the 
Coriolis terms. 

We now assume that the pressure Pa of the atmosphere at sea level is known. 

58x/23/2-6 
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Because of the simple way that [u] and [v] enter F and G, we can then find direct 
expressions for [~]~+l and [u]“+l. 

IhI n+1 = 
(21a) 

[VI 
n+1 = (1 + ;?dr2) {(-dt)&~” - fAth~@)“+~ + yzn - f&“>, (21b) 

with 

71" = 2~%4" - (l/p,)s,ps521) + [U]” +fdt[v]” - gLlt&P)n, (224 

y2n = 2At{[B]” - (I/p,)QF\ + [VI” -f&41” - @W,ti”)n. VW 

Substituting expressions (21a, b) into (19) we get a second-order elliptic equation for 
jp+1. 9 

hn+l - HgAP 
I! 

1 
1 +f2At2 s,(S,tl~ + fAtS,li”) .),+’ 

+ (6, 1 + iaAt2 @,iE” - fA&Wx)n+ll 

= En - HAt 
1 

1 
1 +f2At2 8n(yln +fA~z")~ + 6, ' 1 + f2At2 b” n - fArr$l, 

where 
(23) 

(24) 

and yin, y2n, J, and K are defined by 22a, 22b, 2Oc, and 20d, respectively. 
Equation (23) is solved iteratively, subject to the boundary conditions that h --f 0 

at the far boundaries. 
Then (21) can be used to find u n+l and u”+l, by substituting hn+l from (23). 
The finite differencing of the system of equations (14) and (15), governing the mo- 

tion of the baroclinic modes, follows the procedure used for the barotropic system. 
We rewrite them as 

ad/at =fv’+A-[[A] =M+F,, 

ad/at =fu’+B-[B] = N+F,, 

(25) 

(26) 

where 

44 = -(V . v)24 - (i/po)(aP’/ax) - [AI + fu’, 

N = -(v- V)V - (i/p,)(ap'/ay) - [BI - fu’, 

(27) 

(28) 
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with F, , F, being the friction terms defined in (11). The time dilferencing of (25) and 
(26) becomes an explicit, leap-frog technique,l i.e., 

(U’)n+l zzx (u’)- + 24t(M” + F;-l), (29 

(f/)*+1 = (II’)- + 24t(N” + F;-‘). (30) 

The spatial differencing of the terms M and N is given in Appendix B. It should be 
noted that the finite difference form of the advective terms has quadratic conservative 
property and therefore the model is free from nonlinear instability. The finite difference 
form of the continuity and hydrostatic equations are given by, 

and 
8,u + 6,u + 6,w = 0, PIa) 

6,P = -gp. VW 

5. INITIAL AND BOUNDARY CONDITIONS 

Initially, the ocean is assumed to be barotropic with no motion. The vertical distri- 
bution of the temperature and salinity for the undisturbed model ocean is given in 
Table I. These represent mean values of the North Atlantic Ocean for the month of 
August [8]. 

TABLE I 

Mean values of Temperature, Salinity, and Density for the Month of August at Various Depths of 
the North Atlantic Ocean 

Level 
Depth 

(4 
Temperature 

(“K) 
Salinity 

(g kg-9 
Density 
62 cm-9 

2 5 298.3 36.1 1.0243 
4 15 297.7 36.1 1.0245 
6 25 296.8 36.2 1.0249 
8 35 295.9 36.3 1.0253 

10 45 295.0 36.4 1.0256 
12 60 293.8 36.4 1.0260 
14 80 292.5 36.4 1.0264 
16 100 291.6 36.5 1.0268 
18 120 290.9 36.5 1.0270 
20 140 290.4 36.5 1.0272 
22 175 289.7 36.5 1.0276 
24 250 289.3 36.5 1.0280 
26 575 287.8 36.1 1.0295 
28 1125 286.3 35.5 1.0318 
30 1700 285.5 34.9 1.0341 

1 The leap-frog time-splitting was eliminated by averaging the solutions after every 30 time steps. 
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A steady state, stationary axisymmetric hurricane in gradient wind balance is 
assumed to be the driving force at the ocean surface. The pressure distribution of the 
model hurricane is given by 

P*(r) = PO + (P, - P,) e-R/r, (32) 

where R is the radius of the maximum wind, P,, is the central pressure of the hurricane 
and P, is the surface pressure of the mean tropical atmosphere. This equation was 
used by O’Brien and Reid [6] to study the response of a two layer ocean to a steady 
state hurricane. In this model we use 

and 

P, = 1015 mbar, 
P, = 960 mbar, 

R = 30 kM. 

The magnitude of the tangential velocity (v,,) that balances the pressure distribution 
given by (32) is obtained by the solving the gradient wind equation, given by 

where pa is the density of the mean tropical atmosphere at the surface. The radial 
velocities are assumed to be inward everywhere with magnitudes 0.3 times the magni- 
tude of the tangential velocity at the same point. The stress at the ocean surface due 
to the overlying hurricane is obtained by using the following simple formulas. 

700 = paGVe(~e2 + Vr2Y2, -(15) 

Tro = @CD vr( Ve2 + vr2)1’29 416) 
and 

To = (Ti, + T;o)lh, 

where 7. is the total stress, 700 and 7r0 are, respectively, the tangential and radial 
components of TV, and CD is the drag coefficient. Co is assumed to have a constant 
value of 3 x 10-3. The values of P, 7. , 7eo , and TM are plotted as a function of radius 
in Figs. 3 and 4. 

The vertical component of the stresses 7;Fz , 7yz are assumed to be of the following 
form. 

au 
7x2 = po& t > 

aP 
TVS = PO& z 3 

in the interior of the ocean, and at the surface they are obtained from Eqs. (15) and 
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950 fi 1 fi I 1 1 I I I I I 1 t 
0 60 120 180 240 300 360 420 

RADIUS I km) 

FIG. 3. Hurricane pressure distribution as a function of radius. 

0 60 120 160 240 
RADIUS (km) 

300 360 420 

FIG. 4. Hurricane stress distribution as a function of radius. 

(16) where 1(A and VA are the E-W and N-S components of the atmospheric (hurricane) 
velocity at the ocean surface, pa is the density of the mean tropical atmosphere at the 
surface of the ocean and Cn is the drag coefficient, for which a constant of value of 
3 x 1O-3 has been assumed. 

The vertical eddy coefficients of momentum, Kz , and heat, A,, will depend upon 
the Richardson’s number (R,). In the present model, these values are computed from 
the formulas given by Munk and Anderson [5]. 

and 
Kz = &Cl + /Mi)-Kv 

where K. is the eddy coefficient of momentum for a homogeneous ocean and Ri is 
the Richardson’s number. As recommended by Munk [5], the following values are 
used for the constants K,, , &, /3r, Kv , and KT . 

& = 10-3, pv = 10, Is, = 10/3, Kv = 0.5, and KT = 1.5. 

The stresses at the bottom of the ocean are assumed to vanish at all times. 
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6. RESULTS AND C~MPAKISOS FOR THREE-DIMENSIONAL OCEAN SIMI:LATION 

We have performed two numerical experiments on the same physical model, with 
the initial and boundary conditions, given in Section 5, utilizing an explicit and implicit 
model, respectively. The formulation of the explicit model is very straightforward; 
e.g., see [l]. 

Figures 5 and 6 illustrate the comparison of the implicit and explicit time integrations 

!O 

DISTANCE FROM THE CENTER OF THE HURRICANE (km) 

FIG. 5. A comparison of the tangential velocities (15 and 75 m depths) obtained at the end of 
60 hours of integration of the implicit and explicit models. 

TIME = 60 HOUR 

-EXPLICIT SCHEME 
---IMPLICIT SCHEME 

-101 
0 60 Ix) 180 240 300 360 420 
DISTANCE FROM THE CENTER OF THE HURRICANE (km 1 

FIG. 6. A comparison of the deviatory temperatures (15 and 75 m depths) obtained at the end 
of 60 hours of integration of the implicit and explicit models. 
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for the azimuthal velocity and temperature deviations at various depths, respectively. 
The results are illustrated at 60 hours of elapsed integration as a function of radial 
distance. The velocity results show appreciable deviation only near the boundaries, 
particularly in the lower layer. The errors for h in the upper layer amount to less than 
10 %, but amount to about 25 % in the lower layer. The temperature results show a 
smaller error, a few percent, in all regions of the flow. We attribute the velocity dis- 
crepancies to the different arrival times and reflection of the surface waves as treated 
by the implicit and explicit model, respectively. We plan to insert sponge layers con- 
taining a Rayleigh viscosity to reduce reflection effects. The errors seem to have the 
same absolute size in each layer, and can be attributed to surface effects manifested 
in layers 3 and 7. The amount of computer time saving achieved is a factor of 12; 
the time-step difference of factor 15 was slightly offset by the time necessary to iterate 
the one two-dimensional Helmholtz equation for the free surface height. 

APPENDIX A: LIST OF i%f~oLs 

AH , A, Horizontal and vertical eddy diffusivities 
BH , Bv Horizontal and vertical eddy diffusivities for salinity 

CD Drag coefficient 

f Coriolis parameter 

g Acceleration due to gravity 
h Height of the free surface (Positive for crests and negative for troughs) 
H Total depth of the undisturbed ocean 
K,., , Kv Horizontal and vertical eddy diffusivities for momentum 
P 

PCI 
P’ 
PB 
& 
s 
T 

Tl 
WI 
T’ 
4 v, w 
M bl 
u’, v’ 
Ul, Vl 

x> Y 

Total pressure 
Total pressure in atmospheres 
Pressure due to baroclinicity of the ocean 
Atmospheric pressure at the surface of the ocean 
Richardson’s number 
Salinity (parts per thousand) 
Temperature (” K) 
Temperature (” C) 
Vertically averaged temperature 
Deviatory temperature (T - [Tj) 
E-W, N-S, and vertical components of the velocity 
Vertically averaged values of u and v 
Velocity deviations (U - [u], v - [v]) 
Magnitudes of u and v velocities in the topmost layer 
Coordinates in the E-W and N-S directions (positive E, N) 
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Z Vertical coordinate (positive downward) 
da-, dy Grid distances in x and y directions 
AZ Layer thickness 

P Density of the ocean 

PO Mean density of the ocean 

PS Density of the ocean at the surface 

Pa Atmospheric density at the air-sea interface 

[I = (1 /H) Jr ( )dz Vertical average 

APPENDIX B: FINITE DIFFERENCE FORM OF THE ADJECTIVE TERMS IN THE GOVERNING 
EQUATIONS (I), (21, (51, AND (6) 

The finite difference form of the advective terms in the governing equations for 
momentum, temperature and salinity are given by 

S,(iw) + Gy(iiW) + 6,(wiP), (B.1) 
6&i”iF) + S,(iPP) + 6,(W), WI 

S,(iPT~) + G*(PP) + 6,(w5+), (B.3) 
and 

6,(iw) + G,(W) + 6,(w). (B-4) 
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